学术动态

闫亮:Stein variational gradient descent with local approximations for Bayesian inference
2021年12月02日 | 点击次数:

报告承办单位: 数学与统计学院

报告题目: Stein variational gradient descent with local approximations for Bayesian inference

报告内容 

Bayesian computation plays an important role in modern machine learning and statistics to reason about uncertainty. A key computational challenge in Bayesian inference is to develop efficient techniques to approximate, or draw samples from posterior distributions. Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for this issue. However, the vanilla SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable or too expensive to evaluate. In this talk, we explore one way to address this challenge by the construction of a local surrogate for the target distribution in which the gradient can be obtained in a much more computationally feasible manner. More specifically, we approximate the forward model using a deep neural network (DNN) which is trained on a carefully chosen training set, which also determines the quality of the surrogate. To this end, we propose a general adaptation procedure to refine the local approximation online without destroying the convergence of the resulting SVGD. This significantly reduces the computational cost of SVGD and leads to a suite of algorithms that are straightforward to implement. The new algorithm is illustrated on a set of challenging Bayesian inverse problems, and numerical experiments demonstrate a clear improvement in performance and applicability of standard SVGD.

报告人姓名:  闫亮

报告人所在单位: 东南大学数学学院

报告人职称/职务及学术头衔:    副教授

报告时间:  2021年12月04日11:40-12:20

报告地点: 卡斯迪漫享酒店二楼VIP会议厅

报告人简介:  闫亮,副教授、博士生导师,2011年毕业于兰州大学数学与统计学院。主要从事不确定性量化、贝叶斯反问题理论与算法的研究。2018年入选东南大学“至善青年学者”(A层次)支持计划,2017年入选江苏省高校“青蓝工程”优秀青年骨干教师培养对象。目前主持国家自然科学基金面上项目一项,主持完成国家自然科学基金青年项目和江苏省自然科学基金青年项目各一项。已经在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等国内外刊物上发表20多篇学术论文.