报告承办单位:数学与统计学院
报告题目: Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay(时滞周期仓室模型的基本再生数)
报告人姓名:Xiaoqiang Zhao (赵晓强)
报告人所在单位:Department of Mathematics and Statistics,Memorial University of Newfoundland, Canada (加拿大纽芬兰纪念大学数学与统计系)
报告人职称: 教授,博士生导师
报告时间:2021年5月18日(星期二)晚上19:30-20:30
腾讯会议号码:280 556 551
报告人简介:赵晓强,加拿大纽芬兰纪念大学数学与统计系教授,该校University Research Professorship荣誉获得者。赵教授先后于1983年和1986年在西北大学数学系获学士和硕士学位,1990年在中国科学院应用数学研究所获博士学位。赵教授长期从事动力系统、微分方程和生物数学相关领域的研究,在单调动力学、一致持久性、行波解和渐近传播速度、基本再生数的理论及应用等方面的系列工作受到同行的广泛关注和引用。迄今为止,他已在“Comm. Pure Appl. Math.、 J. Eur. Math. Soc.、 J. reine angew. Math.、J. Math. Pures Appl.、Trans. Amer. Math. Soc.、SIAM J. Math. Anal.”等国际知名期刊上发表论文100余篇,并在Springer出版专著“Dynamical Systems in Population Biology”。
赵教授个人主页:https://www.math.mun.ca/~zhao/
报告摘要:In this talk, I will report our recent research on basic reproduction ratio R0 for time-delayed compartmental population models in a periodic environment. It is proved that R0 serves as a threshold value for the stability of the zero solution of the associated periodic linear systems. An extension of such a theory to spatial population models and a general algorithm for the numerical computation of R0 will be discussed. As an application, we propose a Malaria transmission model with temperature -dependent incubation period, and then establish a threshold type result on its global dynamics in terms of R0. We also do a case study of the Malaria transmission in Maputo Province, Mozambique.